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Chapter 6
Modeling the Cellular Program

The cellular program that governs the
growth, development, environmental response,
and evolutionary context of an organism under
study does so robustly in the face of a
fluctuating environment and energy sources. It
integrates numerous signals about events the
cell must track in order to determine which
reactions to turn on, off, or slow down and
speed up. These signals, which are derived
both from internal processes, other cells, and
changes in the extracellular medium, arrive
asynchronously, and are multivalued in
meaning. The cellular program also has
memory of signals it has received in the past
and of its own particular history as written in
the complement and concentrations of
chemicals contained in the cell at any instant.
The circuitry that implements the working of a
cell and/or collection of cells is a network of
interconnected biochemical, genetic reactions,
and other reaction types.

The experimental task of mapping genetic
regulatory networks using genetic footprinting
and two-hybrid techniques is well underway,
and the kinetics of these networks is being
generated at an astounding rate. Similarly,
technology derivatives of genome data such as
gene expression micro-arrays and in vivo
fluorescent tagging of proteins through genetic
fusion with the GFP protein can be used as a
probe for network interaction and dynamics. If

the promise of the genome projects and the
structural genomics effort is to be fully
realized, then predictive simulation methods
must be developed to make sense of this
emerging experimental data. First is the
problem of modeling the network strucure, i.e.
the nodes and connectivity defined by sets of
reactions among proteins, small molecules and
DNA. Second is the functional analysis of that
network using simulation models built up from
"functional units" describing the kinetics of the
interactions. Both are necessary if the cellular
program is to be understood, diagnosed when
failing, and controlled.

Prediction of networks from genomic data
can be approached from a number of
directions. If the function of a gene can be
predicted from homology, then prior
knowledge of the pathways in which that
function is found in various organisms can be
used to predict the possible biochemical
networks in which the protein participates.
Similar homology approaches based on protein
structural data or functional data for a protein
previously characterized can be used to predict
the type of kinetic behavior of a new enzyme.
Thus, for example, structural prediction
programs that can predict the fold of the
protein product of a given gene are
fundamental to the deduction of the network
structure (Chapter 3 and 4).

The cellular program that governs the organization of developmental pathways,
metabolism, progress through the cell cycle, an organism's response to its environment,
and behavior such as virulence towards another species is governed by a complex network
of genetic and biochemical reactions. Recent experimental technology for obtaining time-
resolved, multivariate estimates of the concentration, activities, and/or localities of cellular
constituents has made it possible to observe the functioning of a biological "system" rather
than simply the function of each isolated part of the cell. This opens up the possibility of
developing semi-empirical models that use the experimental data to deduce network
structure as well as mechanisms and kinetics. This chapter describes a transforming area
of biology that, due to a rapidly expanding experimental database, will give rise to new
computational challenges in the future.
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Modeling the reaction pathway for the glycolytic biochemical system
A novel  gene expression  time series

analysis algorithm known as the Correlation
Metric Construction uses a time lagged
correlation metric  as a measure of distance
between reacting species. The constructed
matrix R is then converted to a Euclidean
distance matrix D, and multidimensional
scaling, MDS,  is used to allow the
visualization of the configuration of points in
high dimensional space as a two dimensional
stick and ball diagram. The goal of this
algorithm is to deduce the reaction pathway
underlying the response dynamics, and was
used on the first few steps of the glycolytic
pathway determined by experiment.

The reconstituted reaction system of the
glycolytic pathway, containing eight enzymes
and 14 metabolic intermediates, was kept

away from equilibrium in a continuous-flow, 
stirred-tank reactor. Input concentrations of
adenosine monophosphate and citrate were
externally varied over time, and their
concentrations in the reactor and the response
of eight other species were measured. The
CMC algorithm showed a good prediction of
the reaction pathway from the measurements
in this much-studied biochemical system. Both
the MDS  diagram itself and the predicted
reaction pathway resemble the classically
determined reaction pathway. In addition,
CMC measurements yield information about
the underlying kinetics of the network. For
example, species connected by small numbers
of fast reactions were predicted to have
smaller distances between them than species
connected by a slow reaction.

 (A) Plot of the time-lagged correlation
function of G6P with all other species. The
experimentally determined lagged correlation
functions. The graph clarifies the temporal
ordering data inherent in the correlation
functions. (B) The 2D projection of the MDS
diagram. Each point represents the calculated
time series of a given species. The closer two
points are, the higher the correlation between
the respective time series. Black (gray) lines
indicate negative (positive) correlation between
the respective species. (C) Predicted reaction
pathway derived from the CMC diagram. Its
correspondence to  the known mechanism is
high.
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Methods and Models for Deducing Genetic and Biochemical Network Structures
First we describe the problem of modeling

the network connectivity using time series
analysis. Most of the time series analysis
techniques that have been applied to gene
expression data fall into a category  of
statistical, distance based methods.  The idea is
to define a distance metric on the space of
species concentrations which associates
smaller distances with directly interacting
species, larger distances with indirectly
relating species, and very large distances with
species that don't interact at all. Once a
distance matrix has been constructed- an
assignment of a number to each pair of species
under consideration- various analysis
techniques such as clustering and SNS
(define) projection can be used to draw futher
meaning from the distance matrix and to
represent putative interspecies relationships
graphically.

The simplest distance based technique for
analysing gene expression time series is that of
simple correlation. The species are treated as
random variables and a correlation coefficient
is calculated for each pair of species and used
as a measure of distance between chemical
species. Simple correlation reveals linear,
simulataneous relationships between variables.
If two mRNA concentrations co-vary linearly,
either positively or negatively, with time
and/or perturbation values, this covariance will
be reflected in a correlation distance measure.
However, nonlinear relationships between
variables are not measured by correlation
coeffiecients, nor are time shifted linear
relationships. Since gene regulation networks
are thought to follow a logic best described by
nonlinear hybrid algebraic differential
equations, such a measure would seem to be
lacking. However, the application of such a
simple distance measure combined with
clustering techniques have resulted in valuable
and unexpected insights.

The computational cost of evaluating the
correlation distance matrix with a simple

correlation distance metric is NM2/2, where M
is the number of genes being monitored over N
time points. Since there are an estimated
100,000 genes along the human genome,
calculating a distance matrix over 2000
observational time points spanning embryonic
development would cost 1013 operations. 
Once a distance matrix has been constructed,
analysis and visualization techniques must be
applied in order to derive meaning from the
distance matrix which adds additional
computational overhead to the cost of the
initial matrix construction (quantify?).

The  next-simplest distance based
techniques for analyzing gene expression time
series use time-delayed correlations between
variables at different time lags in order to
construct a distance matrix.  For every pair of
species, a correlation coefficient is calculated
for the pair at all possible time lags.  In its
simplest version, the distance between the two
species is then taken to be the maximum
correlation coefficient calculated, or some
function of this maximum.

Time shifted correlations reveal linear, 
potentially time lagged relationships between
variables. Being able to capture time shifted
relationships between species is an important
feature for a gene expression distance metric
to have, as it allows detection of cascade-like
regulation mechanisms− fairly common
transcription level gene expression control
structures. The simple no-lag correlation
metric can miss such relationships
altogether. As with the simple correlation
metric described previously, nonlinear
relationships between variables are not
measured by  time-shifted correlation
coefficients. Though this is a serious
limitation, time shifted correlation metrics can
be considered a valuable step up in the
representational hierarchy from simple
correlation, as they are able to capture linear,
time invariant system dynamics.

Because correlations must be calculated at
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all possible time lags between variable pairs,
constructing a time shifted correlation matrix
is more expensive than constructing the
simpler metric.  If there are M genes being
monitored over N time points,  approximately
*** (quantify) arithmetic operations are
required to calculate the time-lagged
correlation distance matrix. Calculating a
distance matrix  for the estimated 100,000
human genes over 100 observational time
points would cost  *** (quantify) operations. 
Add to that the cost of a hierarchical clustering
and a total of *** (quantify) operations are
necessary.

If all the interactions in a network were
linear, then multivariate linear regression
would provide the best estimate of the
dependence of one variable in the system on
the others. However, the dependence on the
activity (or concentration) of one component
as a function of the others is most often very
nonlinear. In this case, linear dependency
measures must be discarded in favor of general
measures of dependency such as the
transinformation. The transinformaton is
defined in terms of the joint probability
distributions among sets of variables. Thus, the
degree to which the value of one variable is
constrained by knowledge of the values for a
set of other variables is given by:
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with the sum over all values of j×V. There are
a number of analyses that exploit this measure
to produce and test network hypotheses against
multivariate, often time-resolved, data.

In order to estimate the dependence of one
variate on another we must calculate
conditional probabilities, that is, the
probability that one variable is in a one state
(concentration range) given that another
variate is in another state. Enough data must
be collected so that the deduced relationships
among variables can be deemed statistically
significant.

For these analyses this amount in data can
be estimated via the χ2 statistic. If we assume

that every chemical variable in our system can
take on only Q different biologically
significant states, then the data constraint
states that for credible analysis the minimum
number of data, d, (where each data represents
the observation of all N variables) is governed:

NQ5d ?
Thus, over 5000 observations must be made
for a system of ten binary variables.
Obviously, this data constraint is extremely
harsh for biochemical systems in which the
number of biologically significant
concentrations can be relatively large and the
number of variables orders of magnitude
greater than 10. Therefore methods (methods
or assumptions? the latter being a
superposition of networks?) must be
developed for breaking large biochemical
networks into smaller sub-networks which can
be probed using this method.

From the time-series data a statistical
analysis must predict the most probable
network of interactions between chemical
species that produced the observed system
dynamics. To do so, the method must
effectively check every possible network of
connections among the measured species.
While the number of such network structures
rises exponentially with the number of
variables composing the system, practically,
the number of possible networks is greatly
reduced with constraints on the solution by
inserting chemical and genetic knowledge into
the analysis, and to simply assume limited
dependencies within the network.

Limiting the number of variables that can
directly cause variations in an observation
severely reduces the model space that it is
necessary to test. For each variable, j, one
finds the strength of the relationship between j
and all other pairs of (perhaps time-lagged)
variables. If the strength of the interaction is
statistically significant, then retain that pair in
the dependency set for the variable j. If after
testing all pairs the dependency set is empty,
conclude that j does not depend on any other
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variable in the system. Otherwise, conclude
that all variables in the dependency set are
causative factors for j.

This is an N(N-1)/2 step algorithm (each
step is composed of calculating the
transinformation for each pair of variables).
Each of these steps involves a three variable
by M data point evaluation of a distribution
estimation algorithm. All of these operations
are repeated for each of the N variables, thus
the scaling law is on the order of N3M.
However, the number of data points necessary
to estimate the joint distributions in the
transinformation for variables with Q states is
of the order QN. The final scaling law for the

estimation becomes approximately N3QN.
Actually, there is some redundancy in the
distribution estimation steps that might be
exploited to slight reduce this QN dependency.

However, the assumptions behind this
algorithm, that three way transinformations are
enough to predict interactions of order greater
than three, can lead to errors of omission in
eukaryotic systems, in particular. Given that
eukaryotic systems can have many multi-
protein complexes containing four or more
proteins, this heuristic may have to be
extended to do at least four and five way
interactions, N4QN - N5QN scaling.
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Methods and Models for Cellular Network Analysis
The nonlinearity of the biochemical and

genetic reactions, along with the high degree
of connection (sharing of substrates, products
and effectors) among these reactions, make the
qualitative analysis of their behavior as a
network difficult. Furthermore, the small
numbers of molecules involved in biochemical
reactions (typical concentrations of 100
molecules/cell) ensure that thermal
fluctuations in reaction rates are expected to
become significant compared to the average
behavior at such low concentrations. Since
genetic control generally involves only one or
two copies of the relevant promoters and genes
per cell, this noise is expected to be even
worse for genetic reactions. The inherent
randomness and discreteness of these reactions
can have significant macroscopic conse-
quences such as that common inside living
cells.

Chemical systems evolve with time
because of changes in their constituent
molecules when those molecules collide and
react. Since naturally occurring molecular
collisions are random, the temporal evolution
of any chemically reacting system is
stochastic. Elementary kinetic theory shows
that, under conditions in which reactive
molecular collisions are separated by many
nonreactive molecular collisions, the temporal
evolution of the system’s state, X(t),

( ) ( )[ ]tX,...,tX)t( N1=X

constitutes a jump Markov process. That is,
X(t) performs a "random walk" in real time
over the N-dimensional integer lattice space,
hopping from one lattice point to another as
successive reactions occur.

An algorithm simulating jump Markov
processes has been rigorously derived from the
same premises that lead to the master equation
(ME), The ME defines evolution of X(t)’s
probability function P(x, t |x0, t0), while the
simulation generates sample trajectories or
"realizations" of X(t). The heart of the
simulation is a procedure for randomly

deciding, at any time t when the system’s state
X(t) is known, at what time t+τ the next
reaction in the system will occur and which
reaction, Rµ, will be the next reaction.

Using a mathematically exact procedure
for generating random values for τ and µ, the
simulation moves the system forward in time
from one reactive collision to the next,
continually updating the chemical species
population levels in accordance with the
outcomes of the selected reactions. The
statistical properties of the system behavior
are estimated using statistics from multiple
simulations under identical conditions.

From a modeling standpoint, the
simulation has two advantages over the ME: it
is straightforward to apply even to complicated
coupled chemical reaction schemes, and the
results of the simulation are directly
comparable with experimental results obtained
on real systems. The primary computational
bottleneck of a simulation approach to the
master equation is that it can be expensive to
model behavior of systems with many reacting
species over extended time intervals.

There are three bottlenecks in the
numerical analysis of biochemical reaction
networks; the first two pertain to using the ME
approach. The first is the multiple time scales
involved. Since the time between biochemical
reactions decreases exponentially with the
total probability of a reaction per unit time, the
number of computational steps to simulate a
unit of biological time increases roughly
exponentially as reactions are added to the
system or rate constants are increased.

The second bottleneck derives from the
necessity to collect sufficient statistics from
many runs of the Monte-Carlo simulation to
predict the phenomenon of interest. Often,
such phenomena as phase-variation of coat-
proteins in pathogenic virus and bacteria,
oncogenesis or DNA mutation, occur at very
low frequencies. Many runs of the Monte-
Carlo algorithm are necessary to properly
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estimate the probabilities of these events if
they are to be analyzed via a stochastic
simulation.

The third bottleneck is a practical one of
model building and testing: hypothesis
exploration, sensitivity analyses and back-
calculations, will also be computationally
intensive before master equation approaches
can be applied to learn about the behavior of a
proposed network model.

One approach to the first bottleneck
problem is to develop a mode-switching
algorithm that can change to numerical
methods more efficient than the ME when
certain conditions are met. A promising
approach is to develop a simulation algorithm
that "interpolates" between the master equation
simulation and the standard ordinary
differential equations (ODEs) used for
described deterministic chemical kinetics. By
first approximating the master equation by a
Fokker-Planck equation (FPE), a subsequent
step allows the generalization of the FPE to
determine an approximate Langevin Equation
(LE). An algorithm would describe the
decision by which method should the
dynamics should be propagated− the Monte-
Carlo ME method, the LE or the ODEs. The
decision would be based on criteria such as its
current concentration, the concentration of
those species with which it directly interacts,
and the rate of the reactions in which it
participates. As a simulation progresses, the
mode of propagation for each species may
switch, but that switching between regimes
must not introduce biased errors in the
integration, that neglect of the fluctuations
does not lead to ablation of certain system
behaviors, and that some estimate be made of
the error introduced by adding heuristic
submodels. This will require multiple
exploratory simulations to be performed
wherein the effect of varying parameters in the
heuristic models are measured.

The above discussion has focused on
spatially homogeneous chemical systems

where rapid mixing prevents the formation of
persistent concentration gradients. Treating
spatially inhomogeneous systems is more
difficult. The usual deterministic approach is
to convert the ordinary differential reaction
rate equations into partial differential
equations that incorporate Fick’s macroscopic
diffusion law. For a stochastic treatment, one
has to subdivide the system volume into
approximately homogeneous spatial sub-
volumes, and then allow diffusive exchanges
of molecules between adjacent subvolumes.
Stochastic simulation becomes even more
computationally expensive in the spatially
inhomogeneous case because of the many
"diffusive exchange reactions" that must be
simulated in addition to the chemical
reactions.

Some stochastic simulations on spatially
inhomogeneous systems have been reported,
but there are unresolved technical issues
associated with the choice of the subvolume
size and the form of the probability rates for
diffusive molecular transfers. An accelerated
stochastic simulation algorithm for
homogenous systems will inevitably be useful
in accelerating the inhomogeneous case, since
inhomogeneous systems are diffusively
interacting assemblages of homogeneous
subsystems.

In order to simulate the necessary
statistics for a given chemical system, many
runs of the Monte-Carlo algorithm must be
executed, and is therefore naturally parallel.
About 4(1-p)/fe

2p samples are required to
estimate the probability, p, of a binary random
event with 95% confidence where fe is the
desired maximum fractional error in p. Thus, a
low probability event that occurs in one cell
1% of the time, and is to be predicted within
+/-0.05%, would require ~10,000 simulations.
Many genetic and biochemical processes are
composed of tens of genes, hundreds of
proteins, complexes and small molecules. In
these cases the computational load is
restrictive.
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High End Computing Needs for Modeling the Cellular Program
Eventually the largest system of genes

and proteins that will probably have to be
simulated is on the order of 100 genes and
regulatory elements and 500 proteins,
complexes and small molecules and maybe
10 cellular compartments or locals. This is
currently well-beyond the scaling laws of
current simulation algorithms and 0.1
teraflop computing of today. The issues
that must be addressed in this area are the
disparate time scales requiring new mode-
switching algorithms, and the gathering of
the necessary statistics to quantify event
likelihood. While the second issue
unambiguously benefits from greater
teraflop machines, the former does too
since algorithm switching will likely only
realize an order of magnitude savings in
simulation time.

In addition, various computational and
experimental data are vital to restricting the
network structure and analysis space, i.e.
more generally integrating domain
knowledge into time-series analysis is
required to be computationally feasible.
Sources of information include not only
experimental, but computational data such
as large scale sequence comparisons,
phylogeny inform- ation, protein fold
recognition, folding and prediction of
structure, enzymology and evaluation of
ligand-receptor affinities and multi-protein
interactions. These areas are compute-
bound in their own right, and their
connection to modeling of the cellular
program  is a natural outgrowth of the
ambition of the computational biology
effort in the Strategic Simulation Plan.

Requirem ents for Networ k Deduction and Anal ysis over the H uman Genom e

Problem Class Sus taine d Capabili ty  2000

Sim ple c orrel ation 1013 fl ops

Tim e-lagged c orrel ation 10** fl ops

Inf ormat ion t heore tic t echni ques 10** fl ops

ME simul ation (hom ogene ous) 10** fl ops

ME simul ation (inhomoge nous) 10** fl ops


